
VERIFICATION AND VALIDATION OF AUTONOMOUS SYSTEMS WITH EMBEDDED
AI: THE VIVAS APPROACH

Simone Fratini1, Patrick Fleith1, Nicola Policella1, Alberto Griggio2, Stefano Tonetta2, Srajan Goyal2, Thi Thieu
Hoa Le2, Jacob Kimblad2, Chun Tian 2, Konstantinos Kapellos3, Christos Tranoris3, and Quirien Wijnands4

1Solenix Engineering GmbH, Germany, {simone.fratini,patrick.fleith,nicola.policella}@solenix.de
2Fondazione Bruno Kessler, Italy, {griggio,tonettas,sgoyal,tle,jkimblad,ctian}@fbk.eu

3Trasys International, Belgium, {konstantinos.kapellos,christos.tranoris}@trasysinternational.com
4European Space Agency, ESA/ESTEC, The Netherlands, quirien.wijnands@esa.int

ABSTRACT

This paper reports on the recent ESA-ESTEC activity
“Verification & Validation of Autonomous System” (VI-
VAS), executed under the Technology Development Ele-
ment (TDE) programme. Objective of VIVAS is to pro-
pose and demonstrate a generic Verification and Valida-
tion methodology based on the usage of the System-level
Simulation Facilities, specifically targeted at autonomous
systems using AI models. The activity had led to the de-
sign and implementation of a Verification & Validation
(V&V) framework that leverages model checking tech-
nologies to automate a loop of test-cases generation, ex-
ecution (on a system-level simulator encompassing AI
models) and the validation of the executed traces against
a given set of properties and coverage conditions. The
implemented use-cases for the demonstration of the VI-
VAS framework is based on 3DROV, a Planetary Robot
Design, Generic Visualization and Validation Tool to pro-
vide end-to-end robotic operations simulation capabili-
ties in closed loop with the environment.

Key words: Verification&Validation, AI, Autonomy.

1. INTRODUCTION

The need for autonomy in space applications is well
known. Stringent communications constraints (limited
communication windows, long communication latencies
and limited bandwidth, uncertainty in the operational sce-
narios), limited access and availability of operators, lim-
ited crew availability, system complexity, and many other
factors preclude direct human oversight and control of
many activities.

Growing usage of Artificial Intelligence (AI) and Ma-
chine Learning (ML) technologies in autonomous sys-
tems poses new challenges, because the approach is very
effective in implementing specific functionalities, but it
comes with inherent uncertainty, and thus may be not

suitable “as-is” for mission-critical systems. The val-
idation and verification of autonomous systems using
AI/ML components, or integrating AI/ML components
with control-based planning and scheduling systems, is
therefore of paramount importance for future missions.

This paper reports on the recent ESA-ESTEC activity
“Verification & Validation of Autonomous System” (VI-
VAS), executed under the Technology Development Ele-
ment (TDE) programme. Objective of VIVAS is to pro-
pose and demonstrate a generic Verification and Valida-
tion methodology based on the usage of the System-level
Simulation Facilities, specifically targeted at autonomous
systems using AI models. The activity had led to the de-
sign and implementation of a V&V framework that, start-
ing from a symbolic model describing system and en-
vironmental conditions, leverages model checking tech-
nologies to automate a loop of test-cases generation, exe-
cution (on a system-level simulator encompassing AI/ML
models) and the validation of the executed traces against a
given set of properties and coverage conditions, formally
specified within the symbolic model. The outcome of the
VIVAS framework consists of coverage statistics of the
executed traces with respect to the symbolic models and
quantitative and qualitative information for each executed
test case. The proposed approach has been demonstrated
by implementing a Proof of Concept based on a state-of-
the-art simulator of a planetary robotic asset making use
of on-board ML models.

More in concrete, the paper presents (1) a background on
autonomy in space and on V&V for autonomous systems
embedding AI/ML modules (in Section 2); (2) a V&V
methodology, based on model checking and simulation,
for autonomous systems leveraging AI/ML technology
and the “VIVAS” Framework, a general, proof of con-
cept, domain independent, software implementation of
the proposed methodology (in Section 3) and (3) exam-
ples of application of VIVAS on two use cases simulating
Martian operational scenarios (in Section 4).

The implemented use-cases for the demonstration of the
VIVAS framework are based on 3DROV, a Planetary
Robot Design, Generic Visualization and Validation Tool



to provide end-to-end robotic operations simulation ca-
pabilities in closed loop with the environment. Using
the 3DROV simulator, the VIVAS framework capabilities
have been demonstrated on two rover based use-cases.

2. BACKGROUND

Existing autonomous systems in space applications have
shown an increasing use of various kinds of AI based
software technologies that contributed to the develop-
ment of capabilities for autonomy, including Intelligent
Sensing, Planning & Execution, Fault Protection and
Health Management, Distributed Decision Making & Co-
ordination. High levels of autonomy and automation en-
able a wider variety of more capable missions, and enable
human operators to focus on higher level tasks for which
they are better suited. Indeed, in many situations auton-
omy is far more than just a convenience; it is a need for
the mission. Deep space and robotic exploration in par-
ticular requires more autonomy, as communications with
ground mission operators are infrequent and delayed, so
that the spacecraft must react to opportunities and hazards
without immediate human control[8].

The most notable achievement of an autonomy in space
is probably the Autonomous Sciencecraft Experiment
(ASE) on Earth Observing 1 (EO-1) [4]. ASE demon-
strated higher-level commanding, on-board scheduling
and re-scheduling capabilities with robust execution by
responding to events and anomalies at execution time.
ASE flew for over 12 years maximizing EO-1’s science
return by processing on-board data to update and adjust
the baseline observation schedule. With the ASE, ML has
started to be used for on-board data analytics. The exper-
iment has been continuously updated during the years of
operation, with the progressive introduction of ML and
on-board automated (re)-scheduling of activities that fos-
tered the introduction of a new mission operation con-
cept for the EO-1 mission. An integration of model based
reasoning with advanced ML in flight has been shown at
NASA also on the Intelligent Payload Experiment (IPEX)
for a CubeSat that flew in 2013-2015[3]. IPEX used sev-
eral artificial intelligence technologies: machine-learned
random decision forests to classify images onboard and
computer vision visual salience software to extract inter-
esting regions for downlinking acquired imagery.

Besides that, autonomy has been used also in other space
domains such as multi-satellite constellations manage-
ment and robotics. Areas of autonomous tasking, re-
sources and path planning, autonomous feature extraction
and data analysis have been then deployed in part on the
AEGIS software on the Mars Exploration Rover (MER)
Opportunity and the Mars Science Laboratory(MSL) Cu-
riosity, as well as in the more recent MARS2020 mission.
NASA is turning increasingly to autonomy and machine
learning to make the most out of Mars exploration mis-
sions. In fact Perseverance, like its predecessor Curios-
ity, relies primarily on two radiation-hardened processors
called Rover Compute Elements that have roughly the

same processing power as a state-of-the art desktop com-
puter from the mid-1990s. That is not enough processing
power to perform complex machine-learning operation,
but still, Perseverance has more autonomy than Curiosity
thanks to an additional flight computer programmed to
help the rover to land safely. AI/ML are in fact involved
in almost all the steps of the mission: Descent & Land-
ing (AI-enabled Terrain Relative Navigation - TRN), AI
Improved Autonomous Navigation on the planet’s sur-
face, Task & Operations Scheduling (Adaptive Control),
AI for Targeting Instruments (Goal Oriented Behaviour
and Opportunistic Science), AI-powered payloads (Au-
tonomous Exploration for Gathering Increased Science
system – AEGIS, Planetary Instrument for X-ray Litho-
chemistry, - PIXL, and more).

ESA is contributing to this progressive adoption of AI/ML
with various initiatives. Among the others we can cite the
OPS-SAT Autonomous Experiment [7] and the Robotic
Digital Twin (RobDT). The OPS-SAT Autonomous Ex-
periment consists of an on-board planning and execution
architecture deployed at ESA to test autonomous opera-
tions on the OPS-SAT mission, a 3-Unit CubeSat struc-
ture. This experiment constitutes one of the first attempts
to the application of AI in ESA for on-board model based
autonomy on a flying mission. Focusing point of this ar-
chitecture is the on-board integration of model based rea-
soning with advanced ML applications of data analytic,
to shorten the loop of data collection, analysis, decision
making and control.

The ROBDT activity proposes a new framework where
engineering methods and AI techniques are integrated
into a coherent Robotic Digital Twin Framework in order
to allow on-line update of the system models, planning
and what-if analysis and plan monitoring and fault diag-
nosis. The use cases described in Section 4 have been
implemented using and updating the control structure in-
herited from the RobDT activity.

The progressive introduction of AI Technologies in
autonomous system, especially learning-based, signifi-
cantly boosted research in the area of V&V for AI-based
components. In fact, the literature is vast and the ap-
proaches are multiple and diverse, ranging from fully
formal techniques for the verification of AI/ML models
in isolation (with particular focus on Neural Networks)
with symbolic approaches [1, 13], to works exploiting
quantitative verification techniques in probabilistic set-
tings [2, 15], to testing-based methodologies [9] and ap-
proaches tailored to system-level V&V of autonomous
systems containing AI/ML components [6]. In relation to
the VIVAS framework presented here, the closest works
are those proposing methodologies based on simulation-
based testing and scenario generation. In particular, two
frameworks closely related to VIVAS are VerifAI ([14])
and Pegasus ([11]). Similarly to VIVAS, both frame-
works are based on the generation of test scenarios from
an abstract model of the system, which are then executed
on a system-level simulator, using a run-time monitor for
determining the test outcomes. The main differences with
VIVAS regard the application domains (with VIVAS be-



Figure 1. VIVAS V&V Approach

ing a more generic framework, whereas both VerifAI and
Pegasus are specifically targeting autonomous driving)
and the specific strategy for abstract scenario generation
(where VIVAS uses automatic techniques based on sym-
bolic model checking, whereas VerifAI and Pegasus use
a combination of manual specifications and probabilistic
sampling).

3. THE VIVAS FRAMEWORK

The VIVAS Framework is grounded on the V&V ap-
proach depicted in Fugure 1 . The V&V work flow is
made of 4 main steps:

Abstract Scenario Generation. The scenario genera-
tion is the first step of the approach. The starting point is
a formal, symbolic model of the system, which provides
an abstract view of both the environment and the compo-
nents under test (including AI/ML parts). Abstract test
scenarios are generated from the formal system model
using symbolic model checking techniques by the ab-
stract scenario generator. Abstract scenarios are defined
as combinations of values of predicates describing inter-
esting behaviours of the abstract system. From the tech-
nical point of view, each abstract scenario is encoded as
a formal property that is expected to be violated by the
system (i.e. a property specifying that “the scenario can-
not occur in the abstract system”). For each such prop-
erty defined by the abstract scenario generator, a model
checker will be executed on the system model, with the
goal of finding a counterexample to the property. By con-
struction, each such counterexample corresponds to an
execution trace witnessing the realization of the abstract
scenario of interest.

Concrete Scenario Generation. Each of the traces pro-
duced by the model checker is then refined into a (set of)
concrete scenarios that can be used to drive the system-
level (concrete) simulator. Ensuring an adequate level of
coverage is one of the primary goals of a good set of tests.
Although the specific criteria usually depend on the ac-
tual use-case application, VIVAS defines some general
coverage criteria at abstract level, including coverage of

the abstract scenarios with respect to the set of proper-
ties, coverage of the properties with respect to the abstract
model and coverage with respect to a domain-specific no-
tion of “interesting situations”.

Simulation. The objective of the system level simula-
tor is to run a simulation of the target asset under the
requested conditions and, at completion, to provide the
execution trace. To this end, the models of all the subsys-
tems are initialised at the provided state and the environ-
ment models are set at the given initial conditions from
the concrete scenarios generated by VIVAS.

Execution Monitor Each concrete scenario produced is
executed by the simulator, which generates a correspond-
ing concrete execution trace. This trace is then used to
determine whether (1) the concrete execution of the sys-
tem satisfies the property of interest, and (2) the concrete
execution of the system complies with the input abstract
scenario (which defines the situation of interest for the
current test). This is done by formally evaluating the trace
with a run-time monitor that is automatically generated
from the formal specification of the property and the ab-
stract system model. The trace evaluation can have four
possible outcomes:

• The trace complies with the abstract scenario (defin-
ing the situation under test), and it also satisfies the
property: the test execution is relevant and the test
passes.

• The trace complies with the abstract scenario, but it
does not satisfy the property: this corresponds to a
test failure on a relevant scenario, and it should be
reported to the user.

• The trace satisfies the property, but it does not com-
ply with the abstract scenario: this corresponds to
a (good) execution in an unexpected situation, in
which some of the assumptions defining the scenario
might be violated. This might be due to impreci-
sions/abstractions in the symbolic model and in the
concretizer, which might prevent the realization of
the abstract scenario under analysis. This situation
might be reported to the user, as it might suggest that
a revision/refinement of the symbolic model might
be needed.

• The trace violates the property and it does not com-
ply with the abstract scenario: this corresponds to a
test failure in an unexpected situation. Similarly to
the above, it might be a warning that the symbolic
model of the system is not precise enough to cap-
ture the situations of interest defined by the abstract
scenario.

This V&V methodology has been implemented and tai-
lored for a challenging scenario, a planetary robotic us-
ing 3DROV (see Section 4). This scenario, by its nature,
lend itself well to the integration of different on-board
ML models since it is characterized by various degrees of



Figure 2. VIVAS Framework Architecture

uncertainty from its strong interaction with the environ-
ment in which it operates via impact, contact and sens-
ing. We considered a typical scenario prepared for a ‘sol’
execution from the ExoMars planetary exploration mis-
sion: the ‘Drilling site approach and surface sample ac-
quisition’. In this scenario the rover moves over a grid to
execute activities that shall be performed autonomously
under the constraints of the available power and temporal
constraints.

An overview of the framework implementation is pro-
vided in Figure 2 . It consists of the following main com-
ponents:

Symbolic Model. The symbolic model defines the ab-
stract representation of the system under test, i.e. the au-
tonomous system and its environment. It is used for the
generation of abstract test cases, covering (abstract) sce-
narios of interest. The model, which is necessarily use-
case specific, is written as a symbolic transition system in
the language of the nuXmv model checker [10]. For the
selected use cases based on 3DROV, the symbolic model
implemented consists of a combination of different mod-
ules:

• environment.smv models the operating environment
of the autonomous system, including the type of ter-
rain at the current position of the autonomous sys-
tem in an abstract map, the time of the day and sea-
son of the year at the start of the mission, the evolu-
tion of air temperature and solar fluxes.

• planner.smv models the autonomous system at the
logical level of mission activities, abstracting away
the modelling of the electro-mechanical parts of the
rover.

• estimator.smv models the logic for computing the
resource consumption during the operation of the
autonomous system. Approximations are used for
more complex computations involving non-linear
functions where needed, in order to keep the com-
plexity of model checking under control.

• scenario.smv contains the definition of the monitor
for the property used by the abstract test generation
to obtain counterexample traces. This file is auto-
matically generated from a high-level specification

of the scenario under analysis, written in JSON, and
described below.

Abstact Scenario Generator. The abstract scenario gen-
erator enumerates abstract test cases via symbolic model
checking, based on the symbolic model and a test input
file, specifying the space of the constraints for the ab-
stract scenarios. More specifically, an abstract scenario is
specified as a collection of N constraints, in which each
constraint is defined by a domain (given as a list of pred-
icates, evaluated in the symbolic model, that the abstract
scenario must satisfy) and a type stating when the pred-
icate must hold in the generated scenario (which can be
initial, final, or intermediate). The generator then takes
as input a file (in JSON format) with the definition of the
constraints, and produces one abstract test per abstract
scenario, enumerated by taking the NxM combinations
of N constraints with M domain elements as defined in
the JSON file. Each abstract scenario is then converted
to a reachability property and injected in the symbolic
model. An abstract execution trace is then computed via
symbolic model checking.

Concrete Scene Generator. The concrete scene gener-
ator translates an abstract scenario to a concrete set of
inputs for the system-level simulator. Due to the abstrac-
tions adopted in the symbolic model, such translation
can be a 1:N mapping, in which a single abstract value
might correspond to multiple concrete values (for exam-
ple, in the 3DROV use cases implemented, locations of
the rover are expressed as cells in a 3x3 grid, which might
be mapped to multiple positions on the planet surface;
another example is the orbital position in the symbolic
model, which corresponds to a set of curves for tempera-
tures and energy fluxes, with concrete values obtained via
sampling). For the selected use cases based on 3DROV,
the concrete scene generator produces a configuration file
in XML format for the 3DROV simulators, consisting of
the following sections:

• An activity plan request, containing the list of activ-
ities to be performed during the rover mission;

• The initial state of the environment and system, such
as position in the map, time of the day, season of the
year, initial battery charge;

• The evolution of temperatures and solar fluxes;

• The location of points of interest for opportunistic
science.

Property Monitor. The property monitor checks the re-
sults of the executions to determine whether they pass
the tests and maintains the database of test results and
coverage information. Specifically, it performs two dif-
ferent checks on the execution traces of the system-level
simulator: (1) Check of the satisfaction of some prop-
erty of interest, to detect interesting test cases leading
to property violations; and (2) Check that the execution
traces comply with the abstract constraints used for sce-
nario generation, to measure the actual coverage of the



test suite in the concrete executions. From the imple-
mentation perspective, the monitor structure consists of a
generic part and a use-case specific part. The generic part
is based on the NuRV [5], which can generate runtime
monitors from generic properties specified as formulas in
Linear Temporal Logic (LTL) [12] over traces of sym-
bolic transition systems. The use-case specific part has
the goal of translating the specific simulator outputs into
the generic input required by NuRV, consisting of a sym-
bolic model, execution trace, and property to monitor.
For the use-cases considered in VIVAS, the monitor ver-
ifies the following properties: (1) The requested mission
plan can be successfully completed within the available
power resources and (2) The novel objects present in the
scene, which are within the vicinity of the rover during
its normal operations for the mission, could be detected
(See section 4). Finally, in order to check whether the
simulated trace complies with the abstract scenario from
which it originated; the monitor relies on a user-defined
mapping that provides the meaning of the abstract con-
straints in the concrete simulation runs (i.e. it specifies
what the symbolic model constraints mean in the real ex-
ecutions). With such mapping, defined in a JSON file,
the monitor can automatically produce a “scenario com-
pliance” property whose satisfaction is determined using
NuRV.

4. TEST CASES

The use cases to show usage and advantages of VIVAS
were designed targeting a challenging scenario in terms
of autonomous capabilities and usage of AI/ML models.

4.1. 3DROV Simulator

To implement the use cases the 3DROV simulator has
been adapted and interfaced with the VIVAS Framework.
The simulator used consists of: (1) the rover models
including platform and payload models (Platform mod-
els: GNC, ADE - Actuator Drive Electronics, Mast,
DHS, Solar Panels, Power and Thermal; Payload models:
Drill, RTB, CLUPI and Wisdom); (2) A component for
the planning/scheduling of the on-board activities, which
makes use of a high-level Rehearsal and Model service
(RaaS/MaaS), integrating ML components, for estimat-
ing activity durations; (3) environment models (the or-
bital and timekeeping model, based on Naif/Spice; the
Atmosphere model, based on the Mars Climate Database
and the Terrain model visualising the planetary surface
on which the rover operates). Additional objects of sci-
entific interest can be included and placed in the scene in
a configurable way.

The 3DROV simulator main components provide the fol-
lowing functions:

• The Rover model simulates the rover and payloads
behaviours. It includes all rover subsystems, the

payloads and the rover control logic reproduction. It
aims at proving the feasibility of the commanded ac-
tivity plans by reproducing the conditions expected
to occur during its progress and by realistically iden-
tifying all the resources needed and available;

• The Environment model is in charge of the simu-
lation of the environment which interacts with the
Rover. This task encompasses real time reproduc-
tion of planetary and orbiter ephemerides as well
as ground stations positions, real time provision of
planetary atmospheric data, preparation of terrain
related data, co-registration of test scientific data as-
sociated to local conditions to feed payload models;

• The Terrain model produces the input for the envi-
ronment model creating a mesh of the terrain faced
by the rover possibly enriched by test scientific data
to be used by payload models. Terrain generation
could be based on real data gathered on Mars or on
fully/partially synthetic reconstruction. The com-
plexity of the representation is tuneable with respect
to the fidelity selected;

• The 3D visualisation environment shows the kine-
matics of the rover and its moving parts acting in
the proper environment;

• The planning component is responsible for schedul-
ing the rover activities necessary for achieving the
mission goals. In order to estimate the activity dura-
tions and related resource consumptions, the planner
interacts with the RaaS/MaaS components.

The simulator takes as input goal plans to be executed
and the system initial state in XML format. It provides,
in log files, traces of the evolution of each subsystem,
the activities that have been executed as well as all the
interactions with external components.

Using the 3DROV simulator, we considered a typical sce-
nario prepared for a ‘sol’ execution from the ExoMars
planetary exploration mission: the ‘Drilling site approach
and surface sample acquisition’. In this scenario the rover
moves over a grid to execute activities that shall be per-
formed autonomously under the constraints of the avail-
able power and temporal constraints.

4.2. ML Models

Two ML models have been integrated as shown in Figure
3: a ”warm-up” model and a ”novelty detector” model.

The “warm-up” ML model was deployed in within the
RobDT project, to predict the duration of Warm-Up ac-
tivities of the Actuator Drive Electronics (ADE). ADE
shall be heated before activating the motors of the rover.
As it is located at the external part of the rover, the dura-
tion of warm-up heavily depends on external atmospheric
conditions and, as presented in the previous section, it is
important from planning and what-if analysis. The model



Figure 3. Autonomous System Architecture

inference is provided at planning time based on the loca-
tion (longitude/latitude) the rover operates, the season in
the year (Ls) and the time on the sol (Ltst) the given op-
eration takes place.

The ”novelty detector” ML model provides functionali-
ties to detect novel objects in images of the environment.
The model has been designed and trained specifically
for this activity using the 3DROV simulator. We used
a Convolutional Autoencoder (CAE) architecture simi-
lar to previous activities performed at NASA for nov-
elty detection on MAST Cam images for the curiosity
rover. A structural similarity (SSIM) loss function has
been used since according to NASA it can detect mor-
phological novelties that are not detected by PCA, GANs,
and mean squared error autoencoders. We carefully gen-
erated a trainset and validation set consisting of typical
images only (no desired novelties) and a test set contain-
ing both typical and novel images to estimate the perfor-
mances of the detector (at model level). The model infer-
ence pipeline run the novelty detector on each patch of an
acquired image. The image is identified as novel, if any
of the patch novelty score is greater or equal than the set
threshold (0.25 to balance probability of false detection
and probability of detection). Patching images not only
enable to improve the local performances and increasing
the amount of training data available, but it also enables
to locate the most novel objects in the image. To locate it,
the inference pipeline returns the central coordinate in the
image of the patch which has the highest novelty score.
Using the simulator, it is possible to project the image
coordinate on the terrain map to identify its position and
further plan the new science opportunity. Performances
have been reported at image level for the ML-component
tested in isolation. False Alarms: Given a normal im-
age, the probability that the detector predict it to be novel
is 0.16; Detection Probability: Given a novel obvious
object, the probability that the detector predicts it to be
novel is 0.8. The model inference endpoint is provided as
RESTful API and invoked ar runtime during the simula-
tion.

4.3. Use Cases

The 3DROV simulator, with integrtated ML models as
shown in Figure 3, has been used to implement 2 use
cases.

The first use case, namely the “Resource Allocation Es-
timation”, relates to the validation of execution of activ-
ities subject to uncertain duration and resource produc-
tion/consumption estimated via the ”warm-up” model.
From an ML V&V point of view, VIVAS has then been
used to study the dependency and accuracy of the esti-
mation of this model from environmental and operational
conditions. The goal is estimate “how good” is the sys-
tem using the ML prediction and its suitability for appli-
cation. This estimation is done comparing the execution
of plan optimized using predictions from the ML model
with the result obtained by feeding the 3DROV simula-
tor with a not optimized plan. At a system level V&V,
System-Level properties considered for validation are:

• Mission achievement. Can the optimized plan be
successfully executed in within the mission horizon
and available resources under different environmen-
tal conditions? This is a pass/fail test.

• Resource allocation. Is the system properly predict-
ing the time/resource necessary for the plan? Is the
allocation congruent with an efficient use of the as-
set? This test compares the execution of the opti-
mized plan with the execution of a nominal (not op-
timized) plan.

Tests are organized under different environmental con-
ditions to study the adequacy of the system behaviour
in different environmental conditions. Various combina-
tions of environamneltal factors were considered, for in-
stance time of the day and soil type.

The second use case, namely the “Novelty Detection in
Images for Opportunistic Science” relates to the valida-
tion of a rover equipped with an ML model to detect in-
teresting objects in the environment. The rover, while
moving over a grid to perform science operations, ac-
quires images and analyse them to identify novel objects,
to possibly support opportunistic science. The purpose of
this use case is twofold: (1) test that the system can prop-
erly detect interesting objects in the environment and (2)
test that the system can properly handle this information.

To this purpose, the test cases are organized to verify that
the V&V framework is able to generate scenario compris-
ing of novel targets in unexplored terrain to assess the in-
tegrated novelty detector correctness (whether evaluated
images are true positives, true negatives, false positive or
false negative). More specifically, the system-level per-
formances have been assessed with two metrics: Detec-
tion Probability (given a novel target in the vicinity of
the autonomous system, what is the probability that the
system will identify and report this region of interest as



“novel”?) and False Alarm Rate (given that there is no
novel target in the vicinity of the autonomous system,
what is the probability that the system wrongly reports
a new novel target of interest?).

To simulate a realistic scenario where a rover is visiting
different places over its mission life, the zone being vis-
ited during the simulation is different from the zone used
to train the novelty detector on typical terrain images, so
it is considered unexplored. This leads to a distribution
shift between the train and test dataset best reproducing a
realistic scenario.

4.4. Results

Regarding the resource allocation estimation, tests were
executed at different time of the day, with different il-
luminating conditions, with different sets of goals to
achieve, involving moving the rover on the grid or only
performing science in situ. The test results show a signif-
icant dependency of plan execution time and energy con-
sumption from the time of the day. Comparing executions
with and without ML optimization, we can observe that
the costs of plans in poor illuminating conditions and/or
not involving moving activities are evaluated correctly by
the ML estimator, while the estimator appears overesti-
mating warm-up times in some good illuminating con-
ditions (not estimating correctly the power generated via
solar panels) and for rover moving activities. In conclu-
sion the test result showed that the estimation was ade-
quate for sample collection activities but seems to over-
estimate time/resources when rover moving activities are
involved, especially on good illuminating conditions. It
is then suggested to re-train the model considering rover
traverses. The time/resource estimation seems more ac-
curate in poor illuminating conditions, probably underes-
timating the power generated by the solar panels in plain
sun. It is suggested to check the estimation of the solar
panels power generation.

Test are executed with different soil types show a de-
pendency of drilling activities duration and energy con-
sumption from the soil type. No differences have been
observed between the execution of tests with or without
the optimization with the ML estimator. We can then
conclude that durations and power consumptions are cor-
rectly estimated for different soil types.

Regarding the novelty detection model, tests results show
a system-level detection probability of about 0.55, lower
than the model-level detection probability (calculated at
0.80 during model training and validation) and a system-
level probability of false detection of approximately 0.04
(also in this case lower figure that what was reported at
model-level, 0.16). Considering that these metrics should
be taken with a word of caution given the limited size of
the terrain used for demonstration purpose (the tests were
organized more to show the capabilities of the VIVAS
Framework in generating sets of diverse testing proce-
dures than for actually providing significant results for

the items under test), it was shown that uncertainties and
inaccuracies that emerge at system level might have a sig-
nificant impact on the performances of an ML model in
operation with respect to the performances calculated in
isolation.

A second testing campaign for this use cases has been im-
plemented to test the capability of the autonomous system
to support opportunistic science by: (1) identifying novel
targets of interests, (2) stopping the activities and travel
to the Region of Interest (RoI) identified, (3) carrying on
analysis in the RoI and (4) going back on the original path
and resume the original plan.

The testing campaign showed that the system seems able
to support opportunistic science in within the boundaries
tested (objects not too far and limited operational grid).
Objects far from the rover trajectory are not detected, ob-
ject detected are analysed and tagged. A problem was
identified in terms of the actual trajectory followed by the
rover when going to analyse the objects. For instance, an
object “along the way but not on the way” of the rover
is properly handled, while an object “on the way” of the
rover is not efficiently handled. In that case, when the
rover identifies the object in front on his trajectory, it
moves there to analyse, but then it comes back to the posi-
tion where the object was identified restarting the trajec-
tory. Another problem identified was that the rover not
always comes back to the original path after the analysis,
recalculating a different path that might resulting in tak-
ing “shortcuts” that does not allow to visit all the planned
locations.

This was only a reduced set of tests, once again aimed
mostly at demonstrating the advantages in using VIVAS
than at actually testing the system, hence the results can-
not be considered conclusive nor exhaustive. But a rec-
ommendation that could be given from these tests is to
check/optimize the trajectory of the rover to avoid er-
ratic counterproductive moves when implementing op-
portunistic science.

5. CONCLUSIONS

In perspective, in the development of space system,
the qualification of at component-level of subsystems
encompassing AI/ML technolgies is a prerequisite for
system-level qualification, hence AI/ML component
should be handled like other space systems (hardware,
software) components, and shall undergo a qualification
campaign. The qualification shall be performed as part
of the MLOps framework. For example: ML-robustness
can be assessed on different slices of the dataset, and
candidate models automatically trained, tested, qualified,
and pushed to the qualified model registry. This first fil-
ter enables to serve to the next level of the V&V chain
(subsystem or system-level) only with qualified models,
i.e., models which comply with the ML-level require-
ments. The next level of V&V could be the subsystem



Figure 4. VIVAS integration with Model Development
Lifecycle

(for instance GNC) Integration, Verification and Valida-
tion (IV&V), followed by System-level IV&V.

The VIVAS project demonstrated the feasibility of a
model-based approach to system-level validation and ver-
ification of autonomous systems integrating AI/ML com-
ponents and proposed the VIVAS Framework, a gen-
eral, domain independent V&V architecture that can be
evolved and adapted to support qualification of AI/ML
in operation, complementing the validation of the AI/ML
model done when the model is designed/trained. In fact,
with VIVAS the model can be tested considering inter-
action with other subsystems and the disturbances in-
duced by such an integration, as well as the capability
of the model to support system-level behaviours, lever-
aging the rigorousness provided by the model checking
approach. The VIVAS framework would conceptually in-
terface with the model development life cycle (see Figure
4), and with the space asset developed, in a similar way
that Ground Support Test Equipment interact with arti-
cles under test in the AIT phase.

REFERENCES

[1] Aws Albarghouthi. Introduction to neural network
verification. Foundations and Trends in Program-
ming Languages, 7(1-2):1–157, 2021.

[2] Luca Cardelli, Marta Kwiatkowska, Luca Lau-
renti, Nicola Paoletti, Andrea Patane, and Matthew
Wicker. Statistical guarantees for the robustness of
bayesian neural networks. 08 2019.

[3] Steve Chien, Joshua Doubleday, David R Thomp-
son, Kiri L Wagstaff, John Bellardo, Craig Francis,
Eric Baumgarten, Austin Williams, Edmund Yee,
Eric Stanton, et al. Onboard autonomy on the in-
telligent payload experiment cubesat mission. Jour-
nal of Aerospace Information Systems, pages 1–9,
2016.

[4] Steve Chien, Rob Sherwood, Daniel Tran, Ben-
jamin Cichy, Gregg Rabideau, Rebecca Castano,
Ashley Davis, Dan Mandl, Stuart Frye, Bruce Trout,

and Seth Shulman. Using Autonomy Flight Soft-
ware to Improve Science Return on Earth Observing
One. Journal of Aerospace Computing, Information
and Communication, 2(April):196–216, 2005.

[5] Alessandro Cimatti, Chun Tian, and Stefano
Tonetta. Nurv: A nuxmv extension for runtime ver-
ification. In Bernd Finkbeiner and Leonardo Mar-
iani, editors, Runtime Verification, pages 382–392,
Cham, 2019. Springer International Publishing.

[6] Martin S. Feather and Alessandro Pinto. Assurance
for autonomy – jpl’s past research, lessons learned,
and future directions, 2023.

[7] Simone Fratini, Nicola Policella, Ricardo Silva, and
Joao Guerreiro. On-board autonomy operations for
ops-sat experiment. Applied Intelligence, 52, 04
2022.

[8] ISECG. Autonomy Gap Assessment Report
of the International Space Exploration Coordi-
nation Group. Available on the ISECG por-
tal: www.globalspaceexploration.org/
wordpress/?page_id=811, 2020.

[9] Chris Murphy, Gail Kaiser, and Marta Arias. An ap-
proach to software testing of machine learning ap-
plications. pages 167–, 01 2007.

[10] NUXMV. NUXMV Web Site. https://nuxmv.
fbk.eu/, 2019.

[11] PEGASUS. Pegasus Symposium Web Site. https:
//www.pegasusprojekt.de/en/, 2016.

[12] A. Pnueli. The Temporal Logic of Programs. In
Proceedings of the 18th IEEE Annual Symposium
on the Foundations of Computer Science, pages
46–57. IEEE Computer Society Press, Providence,
1977.

[13] Caterina Urban and Antoine Miné. A review of for-
mal methods applied to machine learning, 2021.

[14] VERIFAI. Verified Artificial Intelligence Web
Site. https://berkeleylearnverify.
github.io/VerifiedAIWebsite/, 2016.

[15] Matthew Wicker, Luca Laurenti, Andrea Patane,
and Marta Kwiatkowska. Probabilistic safety for
bayesian neural networks. In Jonas Peters and
David Sontag, editors, Proceedings of the 36th
Conference on Uncertainty in Artificial Intelligence
(UAI), volume 124 of Proceedings of Machine
Learning Research, pages 1198–1207. PMLR, 03–
06 Aug 2020.

www.globalspaceexploration.org/wordpress/?page_id=811
www.globalspaceexploration.org/wordpress/?page_id=811
https://nuxmv.fbk.eu/
https://nuxmv.fbk.eu/
https://www.pegasusprojekt.de/en/
https://www.pegasusprojekt.de/en/
https://berkeleylearnverify.github.io/VerifiedAIWebsite/
https://berkeleylearnverify.github.io/VerifiedAIWebsite/

	Introduction
	Background
	The VIVAS Framework
	Test Cases
	3DROV Simulator
	ML Models
	Use Cases
	Results

	Conclusions

